
IEEE TBANSACTIONS ON MlCROWAVS THEORY AND TECHNIQUES, VOL. MTT-33, NO. 2, FEBRUARY 1985 163

onto the guide via a waveguide transition [10]. The insertion loss

of two transitions and a straight section of guide having equal

length as that used in the coupler was first measured. Thus,

power at the coupler ports was corrected for noncoupler losses.

The theoretical and experimental behavior of the coupler is

shown in Fig. 4.

Fig. 5 illustrates the coupling ratio achieved using dielectric

guide of cross section 5.5x 5.5 mm and C,l = 2.1 with the same

alumina film. An isolation better than 25 dBs was achieved

throughout. In both cases, the guide cross-sectional dimensions

[9] were calculated to be as large as possible while still supporting

only monomode propagation at 40 GHz.

V. CONCLUSION

The measurements show that over the entire band 26-40 GHz

a 2.5-dB coupler has been constructed in image guide. The

variation in coupling coefficient was within +0.4 dB of the

average value, i.e., 2.5 dB. The output at the isolated port was at

least 20 dB down over this range. The theoretical model predicted

a 2-dB coupling coefficient, with 4.33 dB for the throu~ port. It

was found in practice that the dielectric film in the coupler did

not make perfect contact tith the ground plane and this resulted

in more power going to the through port and less to the coupled

port. This problem did not occur in the dielectric waveguide as

there is no ground plane.

The broad-band performance can be attributed to the fact that

coupling takes place in the thin dielectric film, and so these

couplers will be much smaller than forward-wave couplers, Also,

the small size reduces the overall attenuation of the circuitry,

APPENDIX

The approximation that a well-guided first-order image or

dielectric guide mode is equivalent to a plane wave propagating

along the longitudinal axis of the guide follows directly from the

Knox and Toulios [9] imalysis. In this, the guiding structure is

simplified to an infinite slab having art effective dielectric con-

stant. Two plane waves can be used to represent the slab guide

TE or TM modes and these will be incident on the two slab

boundaries at the same angle 90 – ~“, which is greater than the

critical angle. Hence, the angles of incidence of the two waves Ori

a dielectric film oriented at 45° to the longitudinal axis and

45+ q“ and 45-4°, their reflection coefficients being P45++, P45_@.

The overall reflection coefficient pr for the mode is give~ by

1 1
IOT=7jp45+c$ + 5P45-.$,. (Al)

Provided o is small, which@ be the case for a guide with low

dielectric constant (even lower effective dielectric constant) and

well-guided mode, then

pT = P45 . (A2)

Otherwise, @ must be evaluated from

(A3)

where K=, Kx are the longitudinal and transverse propagation

constants, respectively, in the’ slab; and Al used in the design

routine.

ACKNOWLEDGMENT

This work has been supported by a Department of Industry

grant. The authors wish to thank E. J. Griffin, R. S.R.E. Malvem,

R. W. Yell, and N. P. L. Teddington who have co-supervised &is

project.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

RJ3F13mNCES

E. A. Marcatili, “Dielectric rectangular wavegnide arrd directional cou-
pler for integrated optics,” Bd[ Syst. Tech. J., vol. 48, no. 7, pp.
~071-2102, 1969.
T. Trinh and R. Mittra, “Coupling characteristics of planar dielectric
waveguides of rectangular crosssection,” IEEE Trans. Microwave Theoiy

Tech., vol. MIT-29, pp. 875-880, Sept. 1981.
i. J. Bahl snd P. Bhartia, “Apertore coupling between dielectric image
lines,” IEEE Trans. Mzivowaue Theoty Tech., vol. MTT29, pp. 891–896,
Sept. 1981.
R. D. B$ch and R. J. Collier, “A broadband image guide directional
coupler,” in 10th Eur. Microwave Con/., (Warsaw), 1980, pp. 295–298.
K. Solbach, “The calculation and the measurement of ‘the coupling
properties of dielectric image fines of rectangular cross section; IEEE

Trans. Microwave Theory Tech., vol. MTT-27, pp. 54–58, Jan 1979.
M. Born and E. Wolf, Principles of Optics., London: pergamon press,
1975, sec.7.6.
R. Rudokas and T. Itoh, “Passive ruilfimeter-wave IC components made
of inverted strip dielectric waveguides,” IEEE Trans. Mzcrowaue Theoiy

Tech., vol. MTT-24, pp. 978-981, Dec. 1976.
W. D. Burrrside tid K. W. Burgener, “H@ frequency scattering by a
thin losslessdielectric slab,” IEEE Trans. Antennas Propagat., vol. AP-31,
pp. 104–110, Jan. 1983.
R. M. Knox and P. P.,Toulios, “Integrated circuits for the rr&imeter
through opticbJ frequeney range,” in Proc. Symp. Submillimeter- Waves,

Polytechrric Pressof Polytechnic Institute of Brooklyn, 1970,pp. 497-5i6.
R. J. Collier and G. X. Chaug, “A broad-baud waveguide to image guide
transition,” in 12th Eur. Mlcrowriue Conf., 1982, pp. 526–533. ,

An Iterative Moment Method for Analyzing the
Electromagnetic Field Distribution inside
Inhomogeneous Lossy Dielectric Obj@s
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Abstract —An iterative method is propused for solving the electromag-

netic deposition inside Iossy inhomogeneous dielectric bodies. The tech-

nique uses the conventional method of moments to forklate the problem

in matrk form. The resulting system of linear equations is solved itera-

tively by the method of conjugate grmhents.

The main advantage of the method is that the iterative procedure does

not require the storage of Wy matrix, thus offering the possibility of

solving I,mger problems compared to conventional inversion or Gaussian

elimination schemes. Another important advantage is that monotonic con-

vergence to a solution is ensured and accomplished witbin a fixed number

of ite@ions, not exceedkg the totaf number of basis functions, indepen-

dently of the initial guess for the solution.

Preliminary examples involving two-dimensional cylinders of fat and

muscle are illustrated. The iterative method is expendable and applicable to

the three-dimensiormf case.
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1. INTRODUCTION

An important problem in the electromagnetic heating of deep-

seated tumors, or hyperthermia, is the determination of the

electromagnetic field distribution and power deposition inside

illuminated lossy inhomogeneous dielectric bodies. Analytical

techniques that guarantee a unique and exact solution are appli-

cable for simple geometries only. For approximate solutions of a

wider range of problems, many numerical or asymptotic tech-

niques are available, including the method of moments [1]–[3],

the finite-element method [4], the extended boundary condition

method and its iterative version [5]–[7], and the geometrical

theory of diffraction [8].

For reasonably accurate modeling of many problems of inter-

est, numerical techniques such as the method of moments usually

require a large number of basis functions, thus leading to large

matrix equations often exceeding the storage capability of the

computer. For these problems, the resulting system of linear

eauations cannot be solved by conventional methods that require

the storage of the matrix, such as in complete matrix inver~ion,

Gaussian elimination, or LU decomposition. This type of limita-

tion is usually encountered in problems where the electromag-

netic field distribution is to be determined in biological bodies in

the resonance and post-resonance frequency range.

Iterative techniques offer the possibility of solving large sys-

tems of equations without requiring the storage of any matrices.

In a survey of numerical techniques for the solution of large

systems of linear equations, Sarkar et al. [9] enumerate the

relative advantages and disadvantages of the various popular

iterative methods. One of the best available techniques at present

is the method of conjugate gradients, where a finite number of

iterations, usually less than the order of the matrix, is sufficient

to obtain the desired solution [10].

In this paper, we apply the method of conjugate gradients to

extend that range of the method of moments to larger problems.

The study is confined to the characterization of the electromag-

netic field distribution inside two-dimensional inhomogeneous

lossy cylinders illuminated by a TM plane wave. The same

procedure applies for the more general three-dimensional case

also. In this approach, the computer storage requirements are

proportional to the total number of unknowns only, and not to

the square of that number, as required by many of the conven-

tional techniques for solving linear equations.

The method of conjugate gradients is a versatile mathematical

tool that can be used to supplement and increase the range of the

method of moments, as demonstrated here, as well as of many

other existing numerical methods for solving electromagnetic

problems. This type of iterative technique has been recently

applied to several electromagnetic problems involving perfect

conductors [11]–[13] and dielectric bodies as well [14], [15].

II. FORMULATION BY THE METHOD OF MOMENTS

Consider the two-dimensional inhomogeneous dielectric cylin-

der of arbitrary cross section illustrated in Fig. 1. The cylinder is

illuminated by an incident TM plane wave E’. Both the incident

field and the induced polarization current have only a z compo-

nent. The polarization current satisfies the integral equation [1],

[16]

J(x, y)
+ y J-J(X’, y’) I@( ‘qp – p’) dx’ dy’

@co(cr(x>Y)-l) SD

= E’(x> y) (1)

where the complex relative permittivity c, is inhomogeneous only
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Cross section of an arbitrarily shaped two-dimensional lossy-inhomo-
geneous dielectric cylinder illuminated by a TM plane wave

in the transverse coordinates, SD is the support of the dielectric

(Z) is the Hankel function of the second kind, zerocylinder, If.

order, and where

]p–p’\= (x–x’)’+(y–y’)’. (2)

The application of the method of moments converts the in-

tegral equation (1) into a matrix equation, where the polarization

current is the unknown vector to be determined

ZJ=E”. (3)

Matrix equations resulting from application of the method of

moments are usually solved by conventional direct methods

including matrix inversion, Gaussian elimination, and LU de-

composition. ‘The approach that will be used in this paper to

solve the matrix equation (3) is based on an iterative process,

known as the method of conjugate gradients, where the matrix

elements are not stored, but are generated repeatedly as needed

during each iteration. It is thus important to find the most

efficient way to generate the matrix elements. In this initial study,

we have chosen to use the simplest basis and testing functions,

pulse and delta functions, respectively, because this choice allows

us to compute the matrix elements in a very efficient manner.

However, in some cases, it may be more advantageous to use a

smaller number of higher order functions, although the computa-

tion of each matrix element will be less efficient.

The cross section of the dielectric cylinder is divided into a

total of N cells, where each cell is chosen small enough to ensure

uniformity of the current. When the integral equation (1) is

enforced at the center of each cell, the resulting expressions for

the elements of the impedance matrix Z are obtained and are

given by

Zpq= + ~ J--fiq’ylc]pp– pql)dxqdyq

jti,o(.,(:p, yp)-l) ~,

(4)

where S~ is the area of the q th cell. An approximation to the

integral in (4) is obtained by assuming that cell q is circular with

radius a ~ given by

Sq 1/2

()aq= — .
r

(5)

With this assumption, the approximation to the integraf is ob-

tained analytically [1]. The resulting approximate expressions for
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the impedance matfi elements are given by

[[

%(~p)Yp )
+ ~H~2)( kaq)

q M%.(%op)-o 1

, p=q

Zpq=

~yJ1(hq)Hf2)(klPp–Pql)> p#q,

(6)

. where .TI and H~2J are the Bessel function, order one, and the

Hankel function of the second kind, order one, respectively.

The computational time for the off-diagonal elements can be

reduced by scaling the matrix equation (3) in the following way:

ZfJ, =El
— — (7)

where

J’= diag( q~a,J1( ka,)}~. (8)

The matrix equation (7) is solved for J’. After resealing the

polarization current, the total electric field can be obtained by

application of the constitutive relationship

J(XP, YP)
Mxq, Yp)=

j(.oco(cr(xp,yp) -l) “
(9)

III. ITERATIVE SOLUTTON BY TIIE MBTHOD OF

CONIUGATE GRADIENTS

The basic principles behind the method of conjugate direc-

tions, in general, and the method of conjugate gradients, in

particular, are described in an original paper by Hestenes and

Stiefel [10]. For the solution of any complex matrix equation

AX= ~, the method of conjugate gradients starts with an initial

guess for X, x(o), and generates the residual vector

~(o) =~x(o –~
— — (lo)

and the direction vector

@ = _ A*~@)
— — (11)

where A * is the complex conjugate transpose of A. The iterative

process starts at this point, and proceeds as follows for the n th

iterative step:

x(~) = x(-l) + ~nf(~)— — (13)

R(n) X R(n-l) + a#P@)— — — (14)

& =
llA*lJ@)112

ll#@- 1) 112
(15)

P(’’+l) = /3nf@) –A*R(”).— — (16)

It has been demonstrated that, for the case when no rounding-

off errors occur, the method of conjugate gradients converges to

the exact solution of the matrix equation, in at most N steps,

where N is the order of the square matrix A [10]. The iterative

algorithm given above applies to any systems AX= 3, where A

may be a complex nonHermitirm matrix, of the type often

encountered in electromagnetic problems. In particular, it applies

to the matrix equation (7).

In any iterative process, a prespecified criterion has to be

selected, such as to terminate the iteration whenever a desired

degree of accuracy is present in the solution. In the method of

conjugate gradients, one could stop the iteration after N steps,

thus making sure that the solution is exact, assuming no apprecia-

ble rounding-off errors occur. However, one can terminate the

iteration at a much earlier step, while still keeping the degree of

accuracy in the solution within acceptable limits. A good and

reliable measure of accuracy is believed to be the root-mean-

square error per sample, defined as 1

~ = (@n),(@n))*)’/2 IIR(”)II.—
n N N’

(17)

At the n th iterative step, the norm of the residual vector is

given by [17]

IIW)I12= py-l),,z _ ll~*@n-1)114, (18)
llAf(n)112

From (18), it is obvious that both the norm of the residual

ll~(n) 11,as well as its normalized value 8., are monotonically

decreasing quantities.

Another measure of accuracy which may be more meaningful

is defined as

tin _ IIB(’’)II
Y“ = (19)

ll&)ll/N ll@ll “

A value of y. = 0.001 means that the degree of accuracy in the

solution is at best 3 significant digits for all samples. Thus, for 3

significant digits of accuracy, y. has to be less than 0.001. A

value of 10– 4 may be a reasonably good choice.

IV. Sow NUMERICAL EXAMPLES

The matrix equation (7) has been solved iteratively by the

method of conjugate gradients for several two-dimensionaf dielec-

tric problems. After obtaining the solution to (7), the polarization

current is computed from (8). The matrix elements are never

stored. To speed up the computational time for the matrix

elements, a look-up table for the Hankel function of the second

kind, order one, is constructed before the initialization of the

iterative process. The look-up table is later used to approximate

Hankel functions by linear interpolation.

Fig. 2(a) and (b) illustrates the normalized current density on a

40-cm strip of muscle, induced by a plane TM wave at 915 MHz,

normal incidence (Fig. 2(a)), and grazing incidence (Fig. 2(b)).

For each case, the same current distribution is observed whether

the strip is divided into 100, 75, or 50 cells. In both cases,

satisfactory results are also obtained when the strip is divided in

25 cells only. Similar observations are made for a 100-cm fat strip

with normal incident (Fig. 3(a)) and grazing incident (Fig. 3(b))

TM fields at 915 MHz. However, for the case of normal inci-

dence, the strip must be divided into more than 25 cells for

satisfactory results (Fig. 3(a)).

Inhomogeneous problems involving both fat and muscle have

also been solved by the same approach. Fig. 4(a) and (b) il-

lustrates the polarization current induced on a 90-cm strip of fat

and muscle, illuminated by a 915-MHz plane TM wave at normaf

incidence (Fig. 4(a)), and grazing incidence (Fig. 4(b)). Relative

to the coordinates system used, the fat–muscle interface XFM is

located at O cm (all muscle), 30 cm (one-third fat, two-thirds

muscle), 60 cm (two-thirds fat, one-third muscle), and 90 cm (all

fat). For the normal incidence case, and for the cases where XFM

1Note that other normalizations for the definition of 8. are also possible and

that the choice of the normalization does not affect the variation of 8. with

iteration.
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is located at 30 cm or 60 cm, the current induced in the fat

portion, away from the interface, is identical to the current that is

induced in a homogeneous strip of fat. Similarly, the current

induced in the muscle portion, away from fhe interface, is identi-

cal to the current induced in a homogeneous strip of muscle (Fig.

4(a)). The shape and magnitude of the current distribution at and

near the interface are the same, whether the interface is located at

30 cm or 60 cm (Fig. 4(a)). It is interesting to note that the
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Fig. 4. (a) Polarization current induced on a 90-cm strip of fat and muscle

dlurninated by a 915-MHz plane TM wave at normal incidence, (b) Polariza-

tion current induced on a 90-cm strip of fat aad muscle illuminated by a

915-MHz plane TM wave at grazing incidence.

portion over which the disturbance in the current distribution is

created by the presence of the interface is roughly equaf to one

wavelength in free space, 32.8 cm. For the grazing incidence case,

the shape of the current distribution at and near the interface is

the same, while the magnitude is smaller for the case where the

interface is located at 60 cm, because of the attenuation of the

wave as it travels through the extra 30-cm strip of fat (Fig. 4(b)).

More complicated inhomogeneous problems have also been

solved iteratively by the method of conjugate gradients. Fig. 5(b)

shows the current induced in the cylindrical structure illustrated

in Fig. 5(a). This problem is first solved on a CDC Cyber 175

computer using a total of 216 samples, with zero for initial guess.

The root-mean-square error per sample 8H is plotted in the first

portion of the lower curve in Fig. 5(c). The solution is then used

as an initial guess to solve the same problem with finer sampling

in muscle, with a total of 432 samples. The root-mean-square

error per sample for this case is illustrated in the second portion

of the lower curve in Fig. 5(c). A much longer computational time

would have been required had we started with zero for initial

guess, as illustrated in the upper curve of Fig. 5(c). There is no

significant difference in the current distributions for the cases of

216 and 432 samples.
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Fig. 5. (a)Two-dimensional rectangular cyfinder containing both fat and

muscle, illuminated by a normafly incident TM plane wave at 915 MHz. (b)

A view of the current induced in the structure shown in Fig. 5(a). (c)

Convergence of the method of conjugate gradients when solving for the

current induced in the structure shown in Fig. 5(a): the root-mean-sauare

error per sample as a function of CPU time. - ‘ ‘

V. CONCLUDING REMARKS

The problem of electromagnetic field distribution inside inho-

mogert~ous 10SSY dielectrics ~ formulated in matrix form by the

me~hod of mom-ents, with pulse basis functions and point m-atch-

ing. The resulting system of N linear equations is solved itera-

tively by the method of conjugate gradients. Since no matrix

elements are stored, the computer storage requirements are con-

siderably less than is required in conventional inversion,

Gaussian elimination, or LU decomposition schemes. The storage

requirement for these conventional schemes is usually of the

order of N2, compared to 5N for the method of conjugate

gradients. With a clear saving in computer storage space, the

iterative approach offers the possibility of solving larger prob-

lems, at the expense of more computational time to generate the

matrix elements.

Another advantage of the method is that the iterative process is

guaranteed to converge monotonically to a solution in at most N

steps, regardless of the initial guess, with the option of terminat-

ing the iteration automatically, once a prespecified criterion has
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been met. The criterion for stopping the iterative process is based

on the fact that the norm of the residual vector is a monotoni-

cally decreasing quantity.

In the numerical solution of large systems of linear equations,

one is confronted with the possibility that the computed results

may be severely contaminated by the accumulation of rounding-

off errors. In the method of conjugate gradients, one has the

option of checking whether appreciable rounding-off errors have

accumulated, by computing the residual vector directly, at the

completion of the final iteration, ~(f) = Z&~ – ~“, and compar-

ing the result with the residual vector that has been updated

through the iterative process as in (14).

As has been mentioned already, convergence of the method of

conjugate gradients does not depend on the initial guess. How-

ever, referring to Fig. 5(c), it is possible in some cases to save a

considerable amount of computer time by starting with a good

initial guess, even when the computational time to obtain this

guess is accounted for.

As presented here, the method of conjugate gradients is not by

itself a method to solve electromagnetic problems. Instead, it is

presented as a mathematical tool that can be used to supplement

and increase the range of many existing methods, the method of

moments being just one of them. It is, however, possible to apply

the method of conjugate gradients directly to integrodifferentiaf

operator equations without the intermediate step of formulating a

specific matrix equation by any conventional method, as has been

demonstrated recently by other authors [11], [12], [14], [15].
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On the Graceful Degradation Performance of
Multiple-Device Oscillators

S.SARKAR AND M. C. AGRAWAL

Abstract —Kurokawa’s theory of multiple-device oscillators is extended

to an analysis of the graceful degradation performance (GD) of the
power-combined oscillators. The anafysis shows that the failure of some of
the constituent devices of a multiple-device oscillator results in a load-pull

effect on the operating devices along with a degradation of power-combin-

ing efficiency of the oscillator circnit. A tradeoff exists between power

output and circuit improvement of the GD.

I. INTRODUCTION

In many applications, a number of oscillating devices (such as

Gunn’s, IMPATT’s, etc.) are power combined to generate the

required level of microwave power [1], [2]. One of the require-

ments of such multiple-device oscillators is that the power output

degrades gracefully as one or more of its constituent devices fail
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to operate. The graceful degradation performance (GD) is given

by the oscillator power output expressed as a fraction of its

no-failure power level. It has been observed [1], [3] that in

practice the GD is well below the ideal which corresponds to

power reduction by just the amount contributed by the failed

devices. Saleh [4] and Kinmau et al. [5] showed that the deviation

of the GD from the ideal is in some way connected with the

circuitry involved. In this paper, an attempt has been made to

identify the factors which govern the GD of multiple-device

oscillators.

II. FACTORS OF THE GD

Typically, a multiple-device oscillator [6] consists of a number

N of identical negative conductance devices, each terminated by a

conductance GO and equally coupled to a power-combining reso-

nator. Fig. 1 shows the coupling between the resonator and one

of the devices. Dots signify the existence of the other devices. The

device is represented by its negative conductance – g~ (AK ) and

susceptance b~, where AK is the RF voltage amplitude that the

device sees across its terminals T – T, when K of devices operate.

The resonator is equivalent to a parallel combination of its loss

conductance Gc, externally coupled load conductance GL, a

capacitance C, and an inductance L. In Fig. 1, the insert between

the device and its terminals T – T shows the effective load

conductance gL ( K ) and susceptance b~ ( K ) presented across the

device by the entire circuit to the right of T – T. Since all the

devices are equally coupled to the resonator (n: 1) they see the

same AK, g~(K), and b~(K).

Assuming that M of the devices belonging to the oscillator

described above fail identically and behave as open circuits after

failure, it can be shown through Kurokawa’s analysis [6], that the

GD in decibels is of the form

GD=IDPD+ED+ID, db (1)

where

[( )A
2

N–M
IDPD = 10log10 ~

Gc + G= + n2GoN

N 1Gc + G. + n2GoN(l– M/N) ‘

db (2)

[( )ED= 10log10 1 – M
Gc + G~ + n2GoN

1
N Gc + G. + n2GoN(l– M/N) ‘

db (3)

ID =lOloglO(l– M/N), db. (4)

The ratio of load conductance seen by an individual device for

K= N–Mtothat for K= Nis [6]

g~(N– M) Gc + G~ + n2GoN

g~(N) = Gc + G. + n2GON(l– M/N) “
(5)

From (2) and (5) it can be easily seen that the individual diode

power degradation (IDPD) represents the effect of device failure

on the power output of each individual device. In other words,

with device failure, the operating devices experience a load-pull

effect. From Kurokawa’s analysis [6], it also follows that the

efficiency degradation (ED) as given by (3) stands for the effect

of device failure on the power-combining efficiency of the oscilla-

tor circuit. The ideal power degradation (ID) is given by (4).

Thus, the factors of the GD are represented by its t&ee compo-

nents IDPD, ED, and ID.
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