IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 2, FEBRUARY 1985

onto the guide via a waveguide transition [10]. The insertion loss
of two transitions and a straight section of guide having equal
length as that used in the coupler was first measured. Thus,
power at the coupler ports was corrected for noncoupler losses.
The theoretical and experimental behavior of the coupler is
shown in Fig. 4. ‘

Fig. 5 illustrates the coupling ratio achieved using dielectric
guide of cross section 5.5X5.5 mm and ¢, = 2.1 with the same
alumina film. An isolation better than 25 dBs was achieved
throughout. In both cases, the guide cross-sectional dimensions
[9] were calculated to be as large as possible while still supporting
only monomode propagation at 40 GHz.

V. CONCLUSION

The measurements show that over the entire band 26-40 GHz
a 2.5-dB coupler has been constructed in image guide. The
variation in coupling coefficient was within +0.4 dB of the
average value, i.e., 2.5 dB. The output at the isolated port was at
least 20 dB down over this range. The theoretical model predicted
a 2-dB coupling coefficient, with 4.33 dB for the through port. It
was found in practice that the diclectric film in the coupler did
not make perfect contact with the ground plane and this resulted
in more power going to the through port and less to the coupled
port. This problem did not occur in the dielectric waveguide as
there is no ground plane.

The broad-band performance can be attributed to the fact that
coupling takes place in the thin dielectric film, and so these
couplers will be much smaller than forward-wave couplers. Also,
the small size reduces the overall attenuation of the circuitry.

APPENDIX

The approximation that a well-guided first-order image or
dielectric guide mode is equivalent to a plane wave propagating
along the longitudinal axis of the guide follows directly from the
Knox and Toulios [9] analysis. In this, the guiding structure is
simplified to an infinite slab having an effective dielectric con-
stant. Two plane waves can be used to represent the slab guide
TE or TM modes and these will be incident on the two slab
boundaries at the same angle 90— ¢°, which is greater than the
critical angle. Hence, the angles of incidence of the two waves on
a dielectric film oriented at 45° to the longitudinal axis and
45+ ¢° and 45-¢°, their reflection coefficients being Pas-+¢» Pas —

The overall reflection coefficient p, for the mode is given by

1

pr= §P45+¢ (A1)

1
+ 2 Pas—g-
Provided ¢ is small, which will be the case for a guide with low
dielectric constant (even lower effective dielectric constant) and
well-guided mode, then

P = Py5- (A2)
Otherwise, ¢ must be evaluated from
. K
=tan~!| ==
¢ = tan ( Kz) (A3)

where K,, K, are the longitudinal and transverse propagation
constants, respectively, in the slab; and Al used in the design
routine.
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An Iterative Moment Method for Analyzing the
Electromagnetic Field Distribution inside
Inhomogeneous Lossy Dielectric Objects
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Abstract — An iterative method is proposed for solving the electromag-
netic deposition inside lossy inhomogeneous dielectric bodies. The tech-
nique uses the conventional method of moments to formulate the problem
in matrix form. The resulting system of linear equations is solved itera-
tively by the method of conjugate gradients.

The main advantage of the method is that the iterative procedure does
not require the storage of any matrix, thus offering the possibility of
solving larger problems compared to conventional inversion or Gaussian
elimination schemes. Another important advantage is that monotonic con-
vergence to a solution is ensured and accomplished within a fixed number
of iterations, not exceeding the total number of basis functions, indepen-
dently of the initial guess for the solution.

Preliminary examples involving two-dimensional cylinders of fat and
muscle are illustrated. The iterative method is extendable and applicable to
the three-dimensional case.
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I. INTRODUCTION

An important problem in the electromagnetic heating of deep-
seated tumors, or hyperthermia, is the determination of the
electromagnetic field distribution and power deposition inside
illuminated  lossy inhomogeneous dielectric bodies. Analytical
techniques that guarantee a unique and exact solution are appli-
cable for simple geometries only. For approximate solutions of a
wider range of problems, many numerical or asymptotic tech-
niques are available, including the method of moments [1]-{3],
the finite-element method [4], the extended boundary condition
method and ' its iterative version [5]-{7], and the geometrical
theory of diffraction [8]. ’

For reasonably accurate modeling of many problems of inter-
est, numerical techniques such as the method of moments usually
require a large number of basis functions, thus leading to large
matrix equations often exceeding the storage capability of the
computer. For these problems, the resulting system of linear
equations cannot be solved by conventional methods that require
the storage of the matrix, such as in complete matrix inversion,
Gaussian elimination, or LU decomposition. This type of limita-
tion is usuvally encountered in problems where the:electromag-
netic field distribution is to be determined in biological bodies in
the resonance and post-resonance frequency range.

Iterative techniques offer the possibility of solving large sys-
tems of equations without requiring the storage of any matrices.
In a survey of numerical techniques for the solution of large
systems of linear equations, Sarkar ef al. [9] enumerate the
relative advantages and disadvantages of the various popular
iterative methods. One of the best available techniques at present
is the method of conjugate gradients, where a finite number of
iterations, usually less than the order of the matrix, is sufficient
to obtain the desired solution [10].

In this paper, we apply the method of conjugate gradients to
extend that range of the method of moments to larger problems.
The study is confined to the characterization of the electromag-
netic field distribution inside two-dimensional inhomogeneous
lossy cylinders illuminated by a TM plane wave. The same
procedure applies for the more general three-dimensional case
also. In this approach, the computer storage requirements are
proportional to the total number of unknowns only, and not to
the square of that number, as required by many of the conven-
tional techniques for solving linear equations.

- The method of conjugate gradients is a versatile mathematical
tool that can be used to supplement and increase the range of the
method of moments, as demonstrated here, as well as of many
other existing numerical methods for solving. electromagnetic
problems. This type of iterative technique has been recently
applied to several clectromagnetic problems involving perfect
conductors [11]-{13] and dielectric bodies as well [14], [15].

II. FORMULATION BY THE METHOD OF MOMENTS

Consider the two-dimensional inhomogeneous dielectric cylin-
der of arbitrary cross section illustrated in Fig. 1. The cylinder is
illuminated by an incident TM plane wave E’. Both the incident
field and the induced polarization current have only a z compo-
nent. The polarization current satisfies the integral equation [1],
[16] ’

J(x, )
jweo(€,(x,y)~1)

k
+ Tn {f](x’,y’) Héz)(klp — p’[) dx’ dy’
D

=E(xy) (1
where the complex relative permittivity €, is inhomogeneous only
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Cross section of an arbitrarily shaped two-dimensional lossy-inhomo-
geneous dielectric cylinder illuminated by a TM plane wave.

Fig. 1.

in the. transverse coordinates, Sy, is the support of the dielectric

_cylinder, H{? is the Hankel function of the second kind, zero

order, and where

4 4 2 ’ 2
lo = o1=y(x= )+ (r=»)". @
The application of the method of moments converts the in-

tegral equation (1) into a matrix equation, where the polarization
current is the unknown vector to be determined

(3)

Matrix equations resulting from application of the method of
moments are usually solved by conventional direct methods
including matrix inversion, Gaussian elimination, and LU de-
composition. The approach that will be used in this paper to
solve the matrix equation (3) is based on an iterative process,
known as the method of conjugate gradients, where the matrix
elements are not stored, but are generated repeatedly as needed
during each’ iteration. It is thus important to find the most
efficient way to generate the matrix elements. In this initial study,
we have chosen to use the simplest basis and testing functions,
pulse and delta functions, respectively, because this choice allows
us to compute the matrix elements in a very efficient manner.
However, in some cases, it may be more advantageous to use a
smaller number of higher order functions, although the computa-
tion of each matrix element will be less efficient.

The cross section of the dielectric cylinder is divided into a
total of N cells, where each cell is chosen small enough to ensure
uniformity of theé current. When the integral equation (1) is
enforced at the center of each cell, the resulting expressions for
the elements of the impedance matrix Z are obtained and are
given by :

- 1 kn I/ HO _
z,, el +5 i HP (klp, — p,) dx, dy,
4

where S, is the area of the gth cell. An approximation to the
integral in (4) is obtained by assuming that cell ¢ is circular with
radius a, given by - : ’

(%) o

With this assumption, the approximation to the integral is ob-
tained analytically [1]. The resulting approximate expressions for
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the impedance matrix elements are given by

Er('xp’yp) '”ap
|- +—-*HP(ka,)|, p=¢
7Z = ]k(ir(xlwyp)_l) 2 ! q)

rq
wa
1 (kag) HP (Klo, = p, ) P*q.

(6)

_where J, and H{® are the Bessel function, order one, and the
Hankel function of the second kind, order one, respectively.

The computational time for the off-diagonal elements can be

reduced by scaling the matrix equation (3) in the following way:

zy =g ()

where

(®)

The matrix equation (7) is solved for J’. After rescaling the
polarization current, the total electric field can be obtained by
application of the constitutive relationship

J(x,,,)
f‘*"o(‘r(xp’yp)"l)

J'= diag{n%anl(kaq)}._I.

E(x4,5,) = ©)

III. ITERATIVE SOLUTION BY THE METHOD OF
CONJUGATE GRADIENTS

The basic principles behind the method of conjugate direc-
tions, in general, and the method of conjugate gradients, in
particular, are described in an original paper by Hestenes and
Stiefel [10]. For the solution of any complex matrix equation
Ax = b, the method of conjugate gradients starts with an initial
guess for x, x©, and generates the residual vector

RO=4x®—p

(10)
and the direction vector
l)(l) [ A*B(O) (11)

where 4* is the complex conjugate transpose of 4. The iterative
process starts at this point, and proceeds as follows for the nth
iterative step:

.= ||A*B(n_l)||2 B <A*B(n—1)’(A*R(n~1))*>

(12)

" 4P (AP",(AP™)*)
xM=x=D g PO (13)
R =R=D 4 g 4PM (14)
3 ||A*I_2(")I|2
b RO )
£(n+1) =Bn—P(n) —A*R(M (16)

It has been demonstrated that, for the case when no rounding-
off errors occur, the method of conjugate gradients converges to
the exact solution of the matrix equation, in at most N steps,
where N is the order of the square matrix 4 [10]. The iterative
algorithm given above applies to any systems Ax = b, where A4
may be a complex nonHermitian matrix, of the type often
encountered in electromagnetic problems. In particular, it applies
to the matrix equation (7).

In any iterative process, a prespecified criterion has to be
selected, such as to terminate the iteration whenever a desired
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degree of accuracy is present in the solution. In the method of
conjugate gradients, one could stop the iteration after N steps,
thus making sure that the solution is exact, assuming no apprecia-
ble rounding-off errors occur. However, one can terminate the
iteration at a much earlier step, while still keeping the degree of
accuracy in the solution within acceptable limits. A good and
reliable measure of accuracy is believed to be the root-mean-
square error per sample, defined as !

*
5 = <1_g(n)’(1_{(n)) W2 _ IR™)| a7
" N N

At the nth iterative step, the norm of the residual vector is
given by [17]

J4*RC V|

IR = (| RC=D|> -
4P|

(18)
From (18), it is obvious that both the norm of the residual
IR“D||, as well as its normalized value §,, are monotonically
decreasing quantities.

Another measure of accuracy which may be more meaningful
is defined as

__ & _1IR™
IxI/N x|

Yn (19)
A value of y, =0.001 means that the degree of accuracy in the
solution is ar best 3 significant digits for all samples. Thus, for 3
significant digits of accuracy, vy, has to be less than 0.001. A
value of 10™* may be a reasonably good choice.

IV. SoMmE NUMERICAL EXAMPLES

The matrix equation (7) has been solved iteratively by the
method of conjugate gradients for several two-dimensional dielec-
tric problems. After obtaining the solution to (7), the polarization
current is computed from (8). The matrix elements are never
stored. To speed up the computational time for the matrix
elements, a look-up table for the Hankel function of the second
kind, order one, is constructed before the initialization of the
iterative process. The look-up table is later used to approximate
Hankel functions by linear interpolation.

Fig. 2(a) and (b) illustrates the normalized current density on a
40-cm strip of muscle, induced by a plane TM wave at 915 MHz,
normal incidence (Fig. 2(a)), and grazing incidence (Fig. 2(b)).
For each case, the same current distribution is observed whether
the strip is divided into 100, 75, or 50 cells. In both cases,
satisfactory results are also obtained when the strip is divided in
25 cells only. Similar observations are made for a 100-cm fat strip
with normal incident (Fig. 3(a)) and grazing incident (Fig. 3(b))
TM fields at 915 MHz. However, for the case of normal inci-
dence, the strip must be divided into more than 25 cells for
satisfactory results (Fig. 3(a)).

Inhomogeneous problems involving both fat and muscle have
also been solved by the same approach. Fig. 4(a) and (b) il-
lustrates the polarization current induced on a 90-cm strip of fat
and muscle, illuminated by a 915-MHz plane TM wave at normal
incidence (Fig. 4(a)), and grazing incidence (Fig. 4(b)). Relative
to the coordinates system used, the fat—muscle interface xpy, is
located at 0 cm (all muscle), 30 cm (one-third fat, two-thirds
muscle), 60 cm (two-thirds fat, one-third muscle), and 90 cm (all
fat). For the normal incidence case, and for the cases where xz,

1Note that other normalizations for the definition of 8, are also possible and
that the choice of the normalization does not affect the variation of 8, with
iteration.
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Current induced on a 100-cm strip of fat with a (a) normally incident
or (b) grazing incident TM plane wave at 915 MHz.

Fig. 3.

is located at 30 cm or 60 cm, the current induced in the fat
portion, away from the interface, is identical to the current that is
induced in a homogeneous strip of fat. Similarly, the current
induced in the muscle portion, away from the interface, is identi-
cal to the current induced in a homogeneous strip of muscle (Fig.
4(a)). The shape and magnitude of the current distribution at and
near the interface are the same, whether the interface is located at
30 cm or 60 cm (Fig. 4(a)). It is interesting to note that the
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Fig. 4. (a) Polarization current induced on a 90-cm strip of fat and muscle
lluminated by a 915-MHz plane TM wave at normal incidence. (b) Polariza-
tion current induced on a 90-cm strip of fat and muscle illuminated by a
915-MHz planc TM wave at grazing incidence.

portion over which the disturbance in the current distribution is
created by the presence of the interface is roughly equal to one
wavelength in free space, 32.8 cm. For the grazing incidence case,
the shape of the current distribution at and near the interface is
the same, while the magnitude is smaller for the case where the
interface is located at 60 cm, because of the attenuation of the
wave as it travels through the extra 30-cm strip of fat (Fig. 4(b)).

More complicated inhomogeneous problems have also been
solved iteratively by the method of conjugate gradients. Fig. 5(b)
shows the current induced in the cylindrical structure illusirated
in Fig. 5(a). This problem is first solved on a CDC Cyber 175
computer using a total of 216 samples, with zero for initial guess.
The root-mean-square error per sample §, is plotted in the first
portion of the lower curve in Fig. 5(c). The solution is then used
as an initial guess to solve the same problem with finer sampling
in muscle, with a total of 432 samples. The root-mean-square
error per sample for this case is illustrated in the second portion
of the lower curve in Fig. 5(c). A much longer computational time
would have been required had we started with zero for initial
guess, as illustrated in the upper curve of Fig. 5(c). There is no
significant difference in the current distributions for the cases of
216 and 432 samples.
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Fig. 5. (a)Two-dimensional rectangular cylinder containing both fat and
muscle, illuminated by a normally incident TM plane wave at 915 MHz. (b)
A view of the current induced in the structure shown in Fig. 5(a). (c)
Convergence of the method of conjugate gradients when solving for the
current induced in the structure shown in Fig. 5(a): the root-mean-square
error per sample as a function of CPU time. )

V. CONCLUDING REMARKS

The problem of electromagnetic field distribution inside inho-
mogeneous lossy dielectrics is formulated in matrix form by the

method of moments, with pulse basis functions and point match- -

ing. The resulting system of N linear equations is solved itera-
tively by the method of conjugate gradients. Since no matrix
elements are stored, the computer storage requirements are con-
siderably less than is required in conventional inversion,
Gaussian elimination, or LU decomposition schemes. The storage

requirement for these conventional schemes is usually of the -
order of N2, compared to 5N for the method of conjugate.

gradients. With a clear saving in computer storage space, the
iterative approach offers the possibility of solving larger prob-
lems, at the expense of more computational time to generate the
matrix elements.

Another advantage of the method is that the iterative process is
guaranteed to converge monotonically to a solution in at most N
steps, regardless of the initial guess, with the option of terminat-
ing the iteration automatically, once a prespecified criterion has
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been met. The criterion for stopping the iterative process is based
on the fact that the norm of the residual vector is a monotoni-
cally decreasing quantity.

In the numerical solution of large systems of linear equations,
one is confronted with the possibility that the computed results
may be severely contaminated by the accumulation of rounding-
off errors. In the method of conjugate gradients, one¢ has the
option of checking whether appreciable rounding-off errors have
accumulated, by computing the residual vector directly, at the
completion of the final iteration, R = ZJ) ~ E', and compar-
ing the result with the residual vector that has been updated
through the iterative process as in (14).

As has been mentioned already, convergence of the method of
conjugate gradients does not depend on the initial guess. How-
ever, referring to Fig. 5(c), it is possible in some cases to save a
considerable amount of computer time by starting with a good
initial guess, even when the computational time to ‘obtain this
guess is accounted for. ‘

As presented here, the method of conjugate gradients is not by
itself a method to solve electromagnetic problems. Instead, it is
presented as a mathematical tool that can be used to supplement
and increase the range of many existing methods; the method of
moments being just one of them. It is, however, possible to apply
the method of conjugate gradients directly to integrodifferential
operator equations without the intermediate step of formulating a
specific matrix equation by any conventional method, as has been
demonstrated recently by other authors [11], [12], [14], [15].

REFERENCES

{1} -J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross-
section shape,” IEEE Trans. Antennas Propagat., vol. AP-13, pp.
334-341, 1965.

[2] D. E. Livesay and K. M. Chen, “Electromagnetic fields induced inside
arbitrarily shaped biological bodies,” IEEE Trans. Microwave Theory
Tech., vol. MTT-22, pp. 1273-1280, 1974.

[31 K. M. Chen and B. S. Guru, “Internal EM field and absorbed power
density in human torsos induced by 1-500-MHz EM waves,” TEEE
Trans. Microwave Theory Tech., vol. MTT-25, pp. 746-756, 1977.



168

[4] M. A. Morgan and K. K. Mei, “Finite-element computation of scattering
by dielectric resonator of very high permittivity,” IEEE Trans. Micro-
wave Theory Tech., vol. MTT-23, pp. 199-208, 1975.

[S] P. W. Barber, “Scattering and absorption efficiencies for nonspherical
dielectrical objects—Biological models,” JEEE Trans. Biomed. Eng., vol.
BME-25, pp. 155-159, 1978.

{6] M. F. Iskander, A. Lakhtakia, and C. H. Durney, “A new procedure for
improving the solution stability and extending the frequency range of the
EBCM,” IEEE Trans. Antennas Propagat., vol. AP-31, pp. 317-324,
1983.

[7} A. Lakhtakia, M. F. Iskander, and C. H. Durney, “An iterative extended
boundary condition method for solving the absorption characteristics of
lossy dielectric objects of large aspect ratios,” IEEE Trans. Microwave
Theory Tech., vol. MTT-31, pp. 640-647, 1983.

[8] T. Isihara and L. B. Felsen, “High-frequency fields excited by a line
source located on a concave cylindrical impedance surface,” JEEE Trans.
Antennas Propagat., vol. AP-27, pp. 172-179, 1979.

[91 T. K. Sarkar, X. R. Siarkiewick, and R. F. Stratton, “Survey of numeri-

cal methods for solution of large systems of linear equations for electro-

magnetic field problems,” JEEE Trans. Antennas Propagat., vol AP-29,

pp. 847856, 1981.

M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for

solving linear systems,” J. Res. Nat. Bur. Stand., vol. 49, pp. 409-436,

1952.

T. K. Sarkar and S. M. Rao, “The application of the conjugate gradient

method for the solution of electromagnetic scattering from arbitrarily

oriented wire antennas,” in Proc. Int. URSI Symp., (Spain), 1983, pp.

93-96.

T. K. Sarkar, “The applications of the conjugate gradient method for the

solution of transient scattering,” in Proc. Int. URSI Symp., (Spain),

1983, pp. 215-217.

M. F. Sultan and R. Mittra, “Scattering from large smooth-cornered

conducting cylinders,” manuscript in preparation.

P. M. Van den Berg, “Iterative computational techniques in scattering

based upon the integrated square error criterion,” in Proc. Int. URSI

Symp ., (Spain), 1983, pp. 97-100.

P. M. Van den Berg, A. T. DeHoop, A. Segal, and N. Praagman, “A

computational model of the electromagnetic heating of biological tissue

with application to hyperthermic cancer therapy,” IEEE Trans. Biomed.

Eng., vol. BME-30, pp.797-805, Dec. 1983.

R. F. Harrington, Field Computation by Moment Methods. Malabar,

FL: R. E. Krieger, 1982.

M. F. Sultan and R. Mittra, “Iterative methods for analyzing electromag-

netic scattering from dielectric bodies,” Electromagnetics Laboratory

Report 84-4, University of Illinois at Urbana, Illinois, 1984.

[10]

{11}

(12]

f13]

{14]

[15}

[16]

171

On the Graceful Degradation Performance of
Multiple-Device Oscillators

S. SARKAR aND M. C. AGRAWAL

Abstract —Kurokawa’s theory of multiple-device oscillators is extended
to an analysis of the graceful degradation performance (GD) of the
power-combined oscillators. The analysis shows that the failure of some of
the constituent devices of a multiple-device oscillator results in a load-pull
effect on the operating devices along with a degradation of power-combin-
ing efficiency of the oscillator circuit. A tradeoff exists between power
output and circuit improvement of the GD.

I. INTRODUCTION

In many applications, a number of oscillating devices (such as
Gunn’s, IMPATT’s, etc.) are power combined to generate the
required level of microwave power [1], [2]. One of the require-
ments of such multiple-device oscillators is that the power output
degrades gracefully as one or more of its constituent devices fail

Manuscript received April 9, 1984; revised August 20, 1984. This work is a
part of a research project supported by the University Grants Commission,
India, under the Special Assistance Program.

The authors are with the Department of Electronics and Communication
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to operate. The graceful degradation performance (GD) is given
by the oscillator power output expressed as a fraction of its
no-failure power level. It has been observed [1], [3] that in
practice the GD is well below the ideal which corresponds to
power reduction by just the amount contributed by the failed
devices. Saleh [4] and Kinman et al. [5] showed that the deviation
of the GD from the ideal is in some way connected with the
circuitry involved. In this paper, an attempt has been made to
identify the factors which govern the GD of multiple-device
oscillators. -

II. FACTORS OF THE GD

Typically, a multiple-device oscillator [6] consists of a number
N of identical negative conductance devices, each terminated by a
conductance G, and equally coupled to a power-combining reso-
nator. Fig. 1 shows the coupling between the resonator and one
of the devices. Dots signify the existence of the other devices. The
device is represented by its negative conductance — g,(Ag) and
susceptance bj,, where Ay is the RF voltage amplitude that the
device sees across its terminals 7 — T, when K of devices operate.
The resonator is equivalent to a parallel combination of its loss
conductance G, externally coupled load conductance G;, a
capacitance C, and an inductance L. In Fig. 1, the insert between
the device and its terminals 7— 7 shows the effective load
conductance g; (K) and susceptance b, (K) presented across the
device by the entire circuit to the right of 7— 7. Since all the
devices are equally coupled to the resonator (n:1) they see the
same Ay, g; (K), and b, (K).

Assuming that M of the devices belonging to the oscillator
described above fail identically and behave as open circuits after
failure, it can be shown through Kurokawa’s analysis [6], that the
GD in decibels is of the form

GD=IDPD+ ED+ 1D, db

M

where
A 2 + G, +n*GyN
IDPD=1010g10( N"“) G+ G+ 1°Gy ,
Ay | G.+Gp+n*GyN(1— M/N)
db (2)
Go+ G, + n’G,N
ED =10log,, (1—M) ct Gt Gy ,
NJ G.+ G, +n’GyN(1— M/N)
db (3)
ID =10log,, (1~ M/N),  db. (4)

The ratio of load conductance seen by an individual device for
K=N—M to that for K= N is [6]

gL(N - M) _
gL(N)

From (2) and (5) it can be easily seen that the individual diode
power degradation (IDPD) represents the effect of device failure
on the power output of each individual device. In other words,
with device failure, the operating devices experience a load-pull
effect. From Kurokawa’s analysis [6], it also follows that the
efficiency degradation (ED) as given by (3) stands for the effect
of device failure on the power-combining efficiency of the oscilla-
tor circuit. The ideal power degradation (ID) is given by (4).
Thus, the factors of the GD are represented by its three compo-
nents IDPD, ED, and ID.

G-+ G, + n*GyN
Ge+ Gy + n*GyN(1— M/N)

&
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